Avatar
😆

Organizations

README.md

GRIFFIN CHOW

SUMMARY

拥有两年后端开发经验,擅长使用Golang(GoFrame框架)进行敏捷开发与业务迭代;同时具备基本的数据分析能力,能够独立完成从数据采集、清洗到可视化呈现的全流程工作。在实际项目中积累了丰富的AB测试经验,深度参与过从实验设计、数据埋点到统计分析的完整闭环,对数据驱动决策有深刻理解。

技术栈方面,熟练掌握SQL进行复杂查询与数据处理,熟练使用Python(Pandas等)进行数据分析与爬虫开发,能够构建自动化脚本提升工作效率;熟练使用Excel进行数据透视、函数处理以及图表可视化;擅长运用Excel、ECharts、Tableau等工具进行数据可视化,将复杂数据转化为清晰易懂的视觉呈现。此外,紧跟AI技术前沿,具备Vibe Coding实践经验,能够使用Coze平台构建智能体应用,了解LLM、RAG、MCP等大模型核心概念及常见机器学习算法。

善于将后端开发思维与数据分析能力相结合,既能实现业务需求的快速迭代,也能通过数据洞察驱动产品优化。具备良好的数据敏感度,能够从业务数据中快速发现异常与机会点;拥有较强的学习能力,能够快速掌握新技术并应用到实际项目中;注重团队协作与跨部门沟通,善于将技术方案转化为易于理解的业务语言,推动项目落地,为业务增长提供技术支撑与数据决策依据。

SKILLS

数据分析

  • 熟练使用SQL进行数据查询与处理,包括多表联查、窗口函数、CTE、子查询等复杂查询
  • 熟练使用Python进行数据分析,掌握Pandas、NumPy等核心库进行数据清洗、处理和分析
  • 熟练使用Excel进行数据处理,包括常用函数(SUMIFS、COUNTIFS、XLOOKUP、INDEX/MATCH等)、数据透视表、条件格式等
  • 熟悉AB测试完整流程,包括实验设计、样本量计算、数据埋点、假设检验、效应量评估等
  • 掌握RFM模型、用户行为分析、漏斗分析等常见数据分析方法
  • 了解K-Means等常见聚类算法和机器学习基础概念

数据可视化

  • 熟练使用ECharts进行交互式图表开发,能够制作雷达图、时间轴、词云等复杂可视化
  • 熟练使用Tableau进行BI报表制作和数据看板搭建
  • 掌握Excel图表制作,能够设计清晰美观的数据报表

数据采集与自动化

  • 熟练使用Python构建网络爬虫(Selenium、Requests等),进行数据采集
  • 能够编写Python自动化脚本,提升数据处理效率
  • 了解数据清洗、数据验证的常见方法和最佳实践

AI与智能体开发

  • 具备Vibe Coding实践经验,能够高效利用AI辅助编程
  • 熟练使用Coze平台构建智能体应用,具备Prompt工程能力
  • 了解LLM(大语言模型)、RAG(检索增强生成)、MCP(模型上下文协议)等前沿技术概念
  • 了解常见机器学习算法原理和应用场景
{
  "tooltip": {
    "trigger": "item"
  },
  "radar": {
    "radius": "65%",
    "indicator": [
      { "name": "SQL", "max": 10 },
      { "name": "Excel", "max": 10 },
      { "name": "Python", "max": 10 },
      { "name": "业务分析", "max": 10 },
      { "name": "可视化", "max": 10 },
      { "name": "AI", "max": 10 }
    ],
    "splitNumber": 11,
    "axisLine": {
      "lineStyle": { "color": "#999" }
    },
    "splitLine": {
      "lineStyle": { "color": "#ccc" }
    },
    "splitArea": {
      "show": false
    },
    "name": {
      "fontSize": 12
    }
  },
  "series": [
    {
      "type": "radar",
      "data": [
        {
          "value": [8, 7, 7, 7, 8, 9],
          "name": "个人技能",
          "areaStyle": {
            "color": "rgba(60,150,250,0.25)"
          },
          "lineStyle": {
            "color": "#3c96fa",
            "width": 2
          },
          "symbol": "circle",
          "symbolSize": 5,
          "itemStyle": {
            "color": "#3c96fa"
          },
          "label": {
            "show": false
          }
        }
      ]
    }
  ]
}

EXPERIENCE

{
  "grid": { "left": 60, "right": 40, "top": 70, "bottom": 70 },
  "legend": {
    "data": ["大学", "考研", "工作"],
    "left": "center",
    "top": 40,
    "icon": "roundRect",
    "itemWidth": 18,
    "itemHeight": 12,
    "textStyle": { "fontSize": 12 }
  },
  "xAxis": {
    "type": "time",
    "name": "时间",
    "nameLocation": "end",
    "nameGap": 10,
    "min": "2019-09-01",
    "max": "2025-10-30",
    "axisLine": { "lineStyle": { "color": "#666" } },
    "axisTick": { "alignWithLabel": true },
    "axisLabel": { "fontSize": 11, "hideOverlap": true },
    "splitLine": {
      "show": true,
      "lineStyle": { "type": "dashed", "color": "#e0e0e0" }
    }
  },
  "yAxis": {
    "type": "value","name": "活跃度",
    "nameLocation": "end",
    "nameGap": 10,
    "min": 0,
    "max": 100,
    "axisLabel": { "show": false },
    "axisTick": { "show": false },
    "axisLine": { "show": false },
    "splitLine": {
      "show": true,
      "lineStyle": { "type": "dashed", "color": "#efefef" }
    }
  },
  "dataZoom": [
    {
      "type": "slider",
      "xAxisIndex": 0,
      "height": 24,
      "bottom": 28,
      "filterMode": "none",
      "fillerColor": "rgba(70,130,255,0.15)",
      "handleSize": "80%",
      "startValue": "2019-09-01",
      "endValue": "2025-10-30"
    },
    { "type": "inside", "xAxisIndex": 0, "filterMode": "none" }
  ],
  "tooltip": {
    "trigger": "axis",
    "axisPointer": { "type": "line" }
  },
  "color": ["#3C78FF", "#FF9F3C", "#33C58D"],
  "series": [
    {
      "name": "大学",
      "type": "line",
      "smooth": true,
      "showSymbol": false,
      "lineStyle": { "width": 2 },
      "areaStyle": {
        "color": {
          "type": "linear",
          "x": 0, "y": 0, "x2": 0, "y2": 1,
          "colorStops": [
            { "offset": 0, "color": "rgba(60,120,255,0.45)" },
            { "offset": 1, "color": "rgba(60,120,255,0.05)" }
          ]
        }
      },
      "data": [
        ["2019-09-01", 0],
        ["2020-02-01", 12],
        ["2020-05-04", 30],
        ["2020-12-31", 35],
        ["2021-06-30", 40],
        ["2022-04-22", 80],
        ["2022-05-27", 60],
        ["2022-09-30", 65],
        ["2023-03-04", 50],
        ["2023-05-01", 30],
        ["2023-06-30", 0]
      ],
      "markPoint": {
        "symbol": "circle",
        "symbolSize": 10,
        "label": { "show": false },
        "emphasis": {
          "label": {
            "show": true,
            "color": "#000",
            "backgroundColor": "rgba(255,255,255,0.85)",
            "borderColor": "#3C78FF",
            "borderWidth": 1,
            "padding": [4,6],
            "fontSize": 11,
            "formatter": "{b}"
          }
        },
        "itemStyle": {
          "color": "#3C78FF",
          "shadowBlur": 6,
          "shadowColor": "rgba(0,0,0,0.15)"
        },
        "data": [
          { "name": "个人博客", "coord": ["2020-05-04", 30], "value": 30 },
          { "name": "Kaggel 银", "coord": ["2022-04-19", 80], "value": 80 },
            { "name": "蓝桥杯Python组三等奖", "coord": ["2022-05-27", 60], "value": 60 },
          { "name": "1+X中级人工智能数据处理师", "coord": ["2023-03-04", 50], "value": 50 }
        ]
      }
    },
    {
      "name": "考研",
      "type": "line",
      "smooth": true,
      "showSymbol": false,
      "lineStyle": { "width": 2 },
      "areaStyle": {
        "color": {
          "type": "linear",
          "x": 0, "y": 0, "x2": 0, "y2": 1,
          "colorStops": [
            { "offset": 0, "color": "rgba(255,159,60,0.45)" },
            { "offset": 1, "color": "rgba(255,159,60,0.05)" }
          ]
        }
      },
      "data": [
        ["2022-01-21", 0],
        ["2022-03-15", 25],
        ["2022-06-15", 45],
        ["2022-09-15", 55],
        ["2022-12-25", 60],
        ["2023-06-30", null],
        ["2023-12-31", null],
        ["2024-01-21", 0],
        ["2024-04-01", 40],
        ["2024-07-01", 55],
        ["2024-10-01", 65],
        ["2024-12-25", 70]
      ],
      "markPoint": {
        "symbol": "circle",
        "symbolSize": 10,
        "label": { "show": false },
        "emphasis": {
          "label": {
            "show": true,
            "color": "#000",
            "backgroundColor": "rgba(255,255,255,0.85)",
            "borderColor": "#FF9F3C",
            "borderWidth": 1,
            "padding": [4,6],
            "fontSize": 11,
            "formatter": "{b}"
          }
        },
        "itemStyle": {
          "color": "#FF9F3C",
          "shadowBlur": 6,
          "shadowColor": "rgba(0,0,0,0.15)"
        },
        "data": [
          { "name": "分数290", "coord": ["2022-12-25", 60], "value": 60 },
          { "name": "分数328", "coord": ["2024-12-25", 70], "value": 70 }
        ]
      }
    },
    {
      "name": "工作",
      "type": "line",
      "smooth": true,
      "showSymbol": false,
      "lineStyle": { "width": 2 },
      "areaStyle": {
        "color": {
          "type": "linear",
          "x": 0, "y": 0, "x2": 0, "y2": 1,
          "colorStops": [
            { "offset": 0, "color": "rgba(51,197,141,0.45)" },
            { "offset": 1, "color": "rgba(51,197,141,0.05)" }
          ]
        }
      },
      "data": [
        ["2023-03-21", 0],
        ["2023-04-22", 50],
        ["2023-06-01", 65],
        ["2023-07-21", 80],
        ["2023-12-31", 78],
        ["2024-06-30", 75],
        ["2024-12-31", 73],
        ["2025-06-30", 55],
        ["2025-09-27", 30],
        ["2025-10-10", 40],
        ["2025-11-03", 55]
      ],
      "markPoint": {
        "symbol": "circle",
        "symbolSize": 10,
        "label": { "show": false },
        "emphasis": {
          "label": {
            "show": true,
            "color": "#000",
            "backgroundColor": "rgba(255,255,255,0.85)",
            "borderColor": "#33C58D",
            "borderWidth": 1,
            "padding": [4,6],
            "fontSize": 11,
            "formatter": "{b}"
          }
        },
        "itemStyle": {
          "color": "#33C58D",
          "shadowBlur": 6,
          "shadowColor": "rgba(0,0,0,0.15)"
        },
        "data": [
          { "name": "数据实习", "coord": ["2023-03-21", 0], "value": 0 },
          { "name": "后端实习", "coord": ["2023-04-22", 50], "value": 50 },
          { "name": "后端开发", "coord": ["2023-07-21", 80], "value": 80 },
          { "name": "辞职学习&接单", "coord": ["2025-09-27", 30], "value": 30 }
        ]
      }
    }
  ]
}

PROJECTS

数据分析

智能体

后端开发

TODO…

EDUCATION

本科

四川大学 · 锦江学院 2019.09 - 2023.06

Pinned

  1. 常见图表类型的简介、特点、作用、适用场景,并附纯 JSON 的 ECharts Option 示例

    echarts 可视化

  2. 26 个常用办公自动化脚本,加入大量关键步骤中文注释,路径占位语义化,可直接改路径运行。

    Excel Word PDF OCR

  3. A/B测试是互联网常用工具,用于验证功能上线效果,是提升用户体验和留存率的关键手段

    数据分析 A/B测试

  4. 概述 Pandas 安装、核心数据结构、输入输出、数据清洗与操作(选择/分组/合并)、描述性统计、相关性与透视、时间序列、常用函数、可视化、性能优化及综合案例

    Python Pandas

    Post activity